

Matthew Pattemore University of Barcelona





Grup de Recerca en Adquisició de Llengües Language Acquisition Research Group



### **Digital Game-Based Language Learning**

#### Games can be great for language learning:

Inherently motivational





Personalised support

R Е Α S R Е 0 R S F R Ε B S

Cornillie, F., Thorne, S. L., & Desmet, P. (2012). ReCALL special issue: Digital games for language learning: challenges and opportunities: Editorial Digital games for language learning: From hype to insight?. ReCALL, 24(3), 243-256.

c.f. Young et al. (2012), Yudintseva (2015), Poole & Clarke-Midura (2020) for research syntheses on DGBL and Language Learning

# **Linguistic Difficulty**

#### **Linguistic Difficulty**



Language is undoubtedly difficult to acquire and some language features are more difficult than others 



a language feature is more **difficult** than another if its processing and learning requires more time and/or more mental activity from a particular language learner in a particular learning context

Housen & Simoens, 2016

#### **Linguistic Complexity**

- Difficulty is a different construct than complexity
  (but sometimes the words get interchanged)
- Complexity has to do with the number of elements in a language system / text, and their relational patterns

(Pallotti, 2015)

Sometimes linguistic structures that are structurally more complex may actually be easier to learn and produce

#### **Linguistic Difficulty**

#### Subjective, Learner-Related Difficulty

- individual differences in cognitive abilities
- knowledge of previously learned languages
- overall L2 proficiency and stage of L2 development
- socioaffective and personality factors (e.g., motivation, extraversion, and anxiety)

#### Objective, Feature-Related Difficulty

- elaborateness (the number of concepts, steps, subrules, or criteria they contain) conceptual clarity (amount and degree of technicality of metalanguage used)
- scope (with general rules vs. specific rules)
  - reliability and truth value (number of exceptions) of the rules

#### Housen & Simoens, 2016

#### **Linguistic Difficulty**

- Subjective, Learner-Related Difficute
- individual differences in cognitive abilities knowledge of previously learned languages
- overall L2 proficiency and stars 2 L Veropme
- socioaffective and personal y factors (e.g., motivation, extraversion, and anxiety)

#### Dbjective 1 raine-Related Difficulty

- labouteless une number of concepts, steps, subrules, or criteria they contain) o. 15, cal clarity (amount and degree of technicality of metalanguage used)
- s pe (with general rules vs. specific rules)
- reliability and truth value (number of exceptions) of the rules

#### Housen & Simoens, 2016

#### Why does difficulty matter?

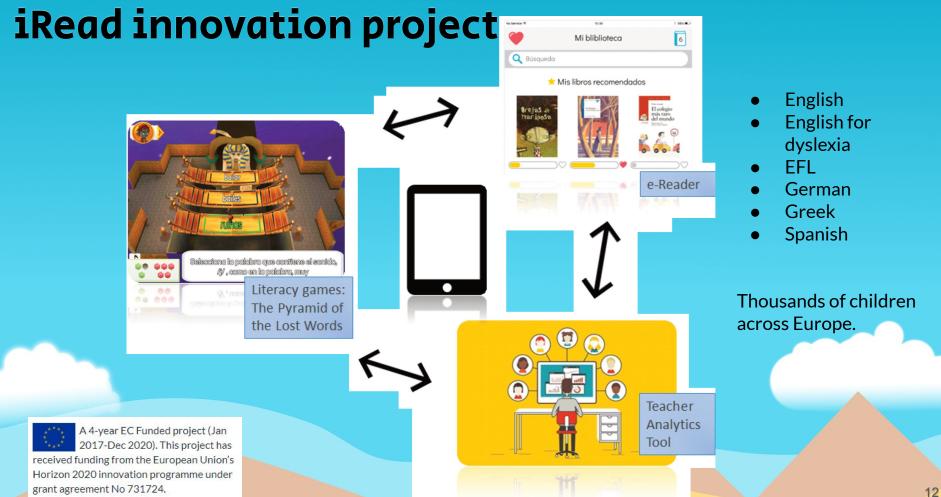
#### Research

- do particular instructional approaches work better for easier/harder language features?
- control for difficulty when investigating other topics

#### Teaching

should teachers focus on simple or difficult features?

#### How do we measure linguistic difficulty?


Until now some of the best indicators of feature difficulty are the judgments of experts (e.g. teachers) and perceptions of students. (Housen, 2014).

Some few studies that use reaction time measures or brain or eye-tracking methods to approximate cognitive difficulty

 (e.g. Godfroid, 2016, Morgan-Short et al., 2010, Godfroid & Uggen, 2013)

but they necessarily have to focus on a comparison of a small number of features

# Context: The iRead Project





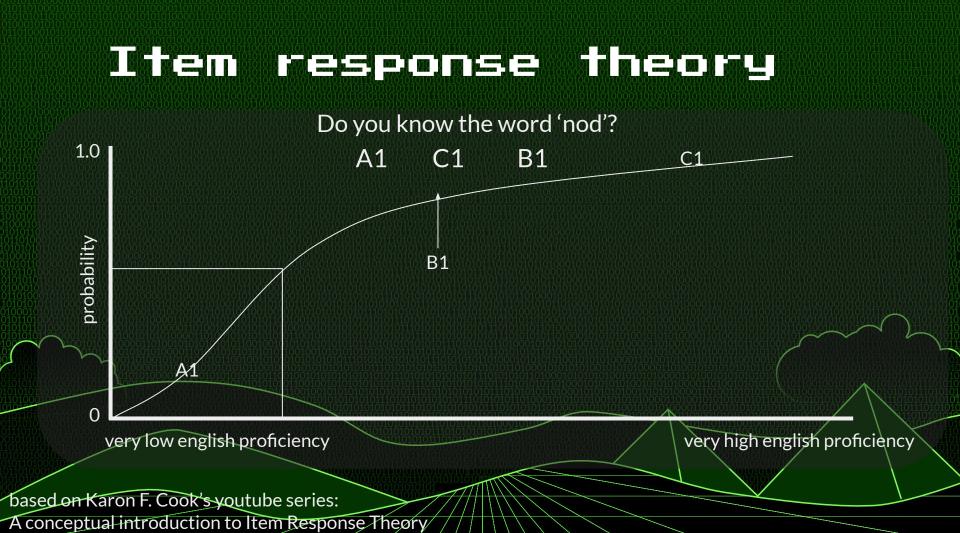


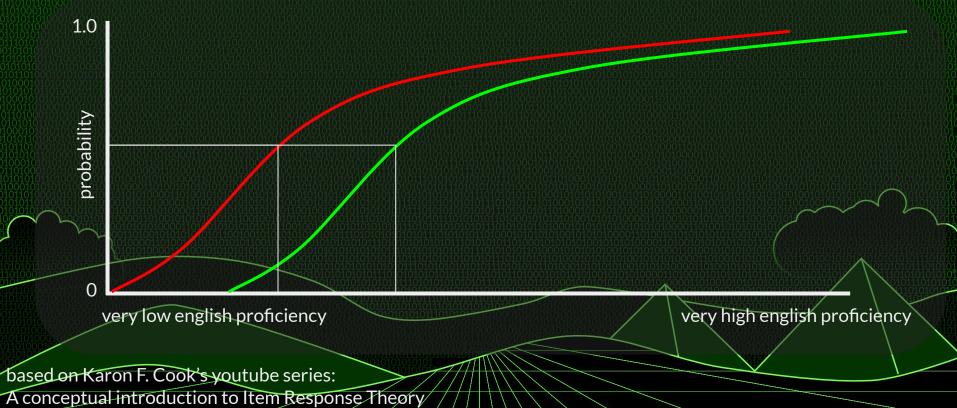


#### **Challenges in interpreting game data**

When a child makes a mistake, how do we disentangle whether the mistake is due to low proficiency, the game being challenging, or the feature itself being challenging?

#### One of the big advantages of digital games is...


# Diff Hitorole Oloriti Hitorole Oloriti Hitorole Oloriti Hitorole Hi


From the games, we have tens of thousands of observations of hundreds of Spanish children playing minigames based on more than 200 features.

### Classical test theory

Measured ability = true ability + error

An IRT model estimates the likelihood of different responses to items by people with different levels of the trait being measured.





- IRT models can work with missing data
- IRT models can make data comparable between different instruments
- IRT models can give you information about individual questions
  - e.g. how well they discriminate and at what levels they discriminate best

In practice, we can construct (some types of) IRT models using a binomial form of a GLMM.

De Boeck et al., 2011

IRTmodel = glmer(response ~ -1 + fixedeffect + (1|randomeffect) + (1|randomeffect), family=binomial("logit"), data=datasource



"the probability of a correct response to an item is a mathematical function of person and item parameters"

Each question posed by a minigame is an item

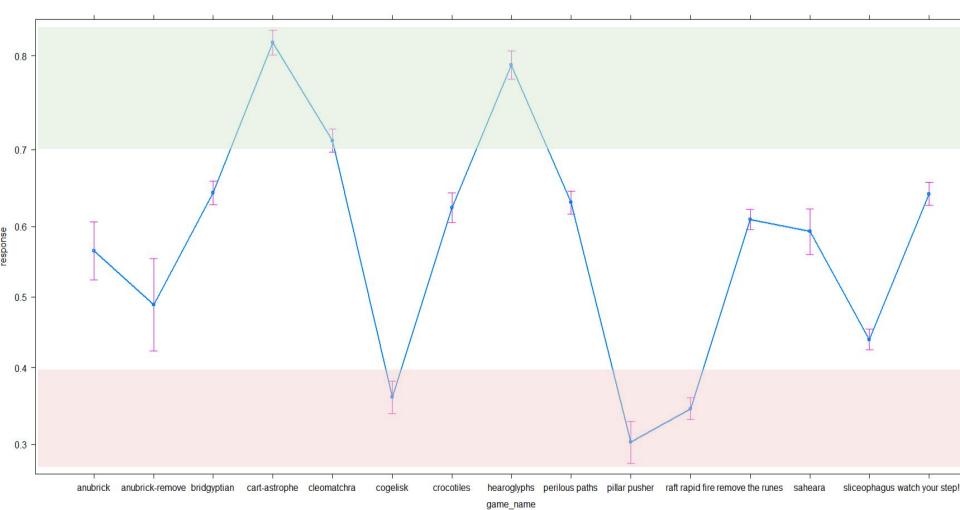


"the probability of a correct response to an item is a mathematical function of person and item parameters"

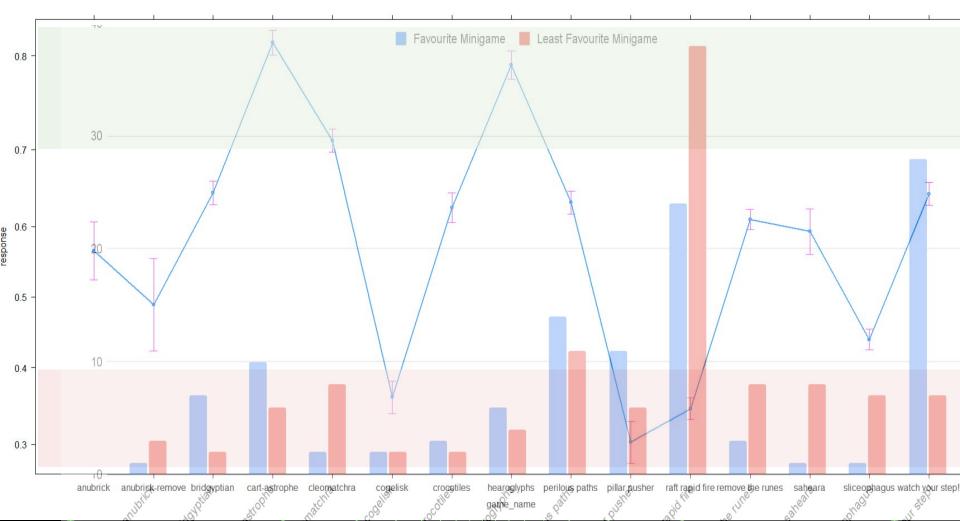
Each question posed by a minigame is an item

Item parameters include minigame type and feature

ability + minigame difficulty + feature difficulty


This allows us to disentangle feature and minigame difficulty

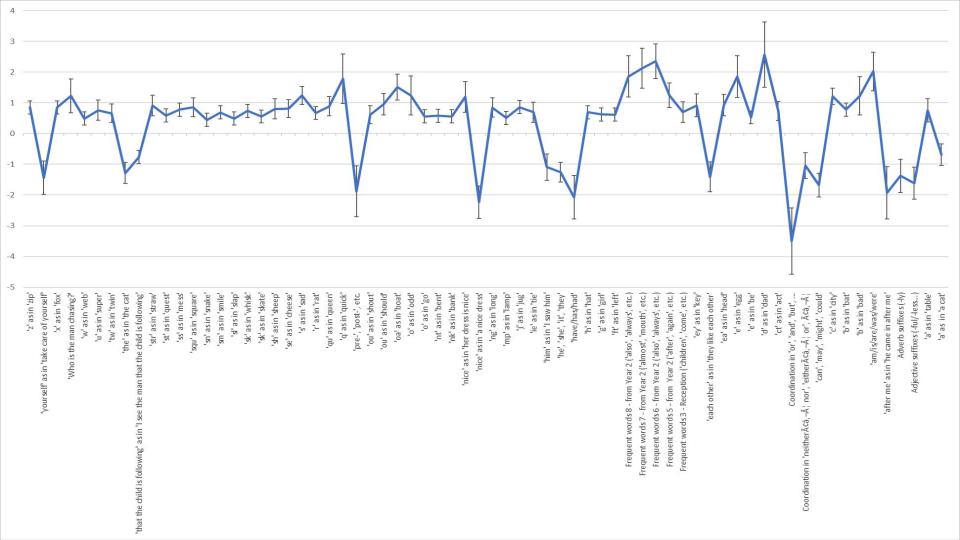
Actually utilises the large dataset - ~432000 item responses


Can create an objective list of relative difficulties of various features for EFL learners

ability + minigame difficulty + feature difficulty

game\_name effect plot

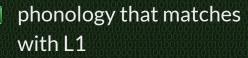



#### game\_name effect plot




#### ability + minigame difficulty + feature difficulty

#### ability + minigame difficulty + feature difficulty


|    | A                              | В            | С            | D            | E             |  |
|----|--------------------------------|--------------|--------------|--------------|---------------|--|
| 1  |                                | Estimate     | Std. Error   | z value      | Pr(> z )      |  |
| 2  | description(CC)+S+V+DO+OI(CC)  | 0.6185341326 | 0.335053338  | 1.846076616  | 0.0648810816  |  |
| 3  | description/a/-a               | 1.272109561  | 0.185686308  | 6.850852769  | 0.00000000000 |  |
| 4  | description/aa/-aa             | 0.1474663877 | 0.210519334  | 0.7004885698 | 0.4836222409  |  |
| 5  | description/ae/-ae             | 0.269436068  | 0.187413734  | 1.437653801  | 0.1505323076  |  |
| 6  | description/ai/-aÃ             | 0.3433298742 | 0.187181510  | 1.834208265  | 0.0666230851  |  |
| 7  | description/aj/-ai             | 0.2837153053 | 0.185918709  | 1.526018048  | 0.1270053699  |  |
| 8  | description/aj/-ay             | 0.2170620969 | 0.184154865  | 1.178693253  | 0.2385203433  |  |
| 9  | description/ao/-ao             | -0.018903032 | 0.221220198  | -0.085448943 | 0.9319044839  |  |
| 10 | description/au/-aÃ⁰            | 0.3907264532 | 0.1874933423 | 2.083948413  | 0.0371648600  |  |
| 11 | description/aw/-au             | 0.3181904956 | 0.185990995  | 1.710784415  | 0.0871209176  |  |
| 12 | description/b/-b               | 0.5442931531 | 0.1876865528 | 2.900011455  | 0.0037314902  |  |
| 13 | description/b/-v               | 0.6372239257 | 0.191081174  | 3.334833633  | 0.0008535045  |  |
| 14 | description/d/-d               | 1.033677336  | 0.191290039  | 5.403717522  | 0.000000653   |  |
| 15 | description/e/-e               | 1.253558949  | 0.187229133  | 6.695319937  | 0.00000000000 |  |
| 16 | description/ʧ/-ch              | 0.6934631719 | 0.188049770  | 3.687657634  | 0.0002263279  |  |
| 17 | description/ÊD/-II             | 0.6798365367 | 0.186156271  | 3.65196687   | 0.0002602395  |  |
| 18 | description/Ê <sup>®</sup> /-y | 0.5233539483 | 0.189097285  | 2.767643901  | 0.0056463112  |  |
| 19 | description/ɾ/-r               | -0.026412240 | 0.185074730  | -0.142711217 | 0.8865182573  |  |
|    | 1421 11                        |              |              |              |               |  |





# Easier features

| Estimate |
|----------|
| 2.566385 |
| 2.354535 |
| 2.129937 |
| 2.021187 |
| 1.862003 |
| 1.854427 |
| 1.780006 |
| 1.506819 |
|          |



- common words
- the verb to be

low frequency consonants

| feature                                  | Estimate |
|------------------------------------------|----------|
| Coordination in 'or', 'and', 'but',      | -3.50077 |
| 'nice' as in 'a nice dress'              | -2.23587 |
| 'have/has/had'                           | -2.07429 |
| 'after me' as in 'he came in after me'   | -1.93248 |
| 'pre-', 'post-', etc.                    | -1.87932 |
| 'can', 'may', 'might', 'could'           | -1.6747  |
| Adjective suffixes (-ful/-less)          | -1.61517 |
| 'yourself' as in 'take care of yourself' | -1.4372  |

| feature                                                                            | Estimate |
|------------------------------------------------------------------------------------|----------|
| 'each other' as in 'they like each other'                                          | -1.4078  |
| Adverb suffixes (-ly)                                                              | -1.37697 |
| 'the' as in 'the cat'                                                              | -1.28361 |
| 'he', 'she', 'it', 'they'                                                          | -1.25597 |
| 'him' as in 'I saw him'                                                            | -1.09317 |
| Coordination in 'neither/nor',<br>'either/or',                                     | -1.04798 |
| 'that the child is following' as in 'I see<br>the man that the child is following' | -0.7685  |
| 'a'as in 'a cat'                                                                   | -0.68278 |

### Harder features

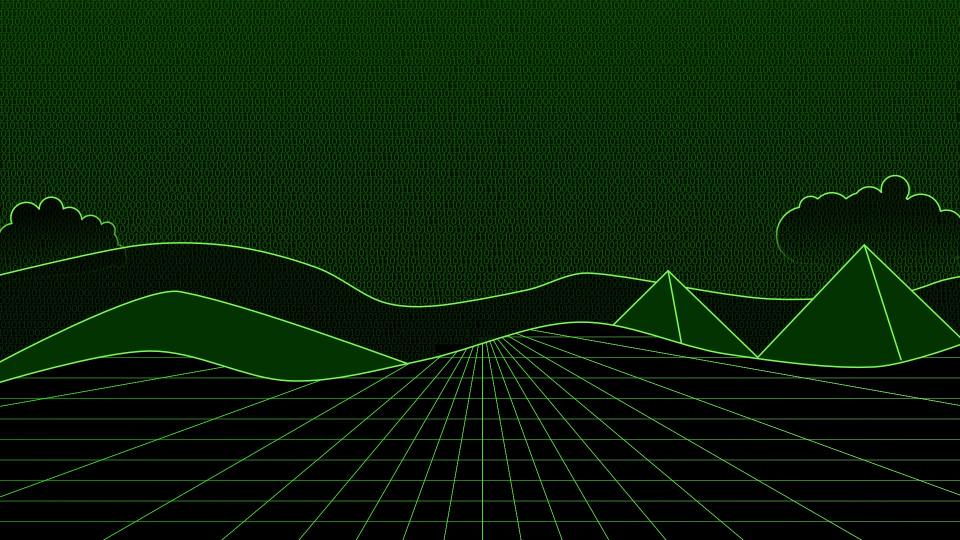
conjunctions and coordinators

anaphora and pronouns



prefixes / suffixes




the verb 'to have'

modal verbs

| feature                          | estimate |
|----------------------------------|----------|
| 'nice' as in 'her dress is nice' | 1.192034 |
| 'nice' as in 'a nice dress'      | -2.23587 |

Her dress is nice - su vestido es bonito

A nice dress - un vestido bonito







#### **Conclusions and Discussion**

- Ising the vast amounts of data from the Navigo games
- and an IRT model
- we can show that some linguistic features are demonstrably easier or harder than others
- for this group of learners (relatively low proficiency, Spanish/Catalan 11-year olds)

#### **Conclusions and Discussion**





The way the features are tested may still make a difference.



We have only limited explanations as to why these features are difficult.



But, conceptually, this seems to be an objective method for investigating linguistic feature difficulty.



Any other thoughts or comments?

# Thank you!



#### matthew.pattemore@ub.edu





Grup de Recerca en Adquisició de Llengües Language Acquisition Research Group

